SIMULATING HYDROGEN & CARBON CHEMISTRY IN COSMO SIMS

Prachi Khatri With: Cristiano Porciani, Emilio Romano-Díaz

ASPECS (Walter+20)

BOTTLENECK FOR CHEMISTRY: THE UNRESOLVED DENSITY STRUCTURE

Courtesy: SILCC-Zoom

Real ISM

Simulated ISM

The finite resolution of simulations misses the density structure of the ISM, important for modelling chemical abundances and emission.

100 pc

HYACINTH: HYdrogen And Carbon chemistry in the INTerstellar medium in Hydro simulations

Prachi Khatri¹, Cristiano Porciani^{1, 2, 3, 4}, Emilio Romano-Díaz¹, Daniel Seifried⁵, and Alexander Schäbe⁶

- ¹ Argelander Institute f
 ür Astronomie, Auf dem H
 ügel 71, D-53121 Bonn, Germany, e-mail: pkhatri@astro.uni-bonn.de
- ² SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste TS, Italy
- ³ Dipartimento di Fisica Sezione di Astronomia, Università di Trieste, Via Tiepolo 11, 34131 Trieste, Italy
- ⁴ IFPU, Institute for Fundamental Physics of the Universe, via Beirut 2, 34151 Trieste, Italy
- ⁵ Universität zu Köln, I. Physikalisches Institut, Zülpicher Str 77, D-50937 Köln, Germany
- ⁶ TÜV NORD EnSys GmbH & Co. KG, Am TÜV 1, D-30519 Hannover

THE SUB-GRID INGREDIENTS

CAUTION: The ISM is much more complex and these are effective models

THE SIMULATION

RAMSES simulation with non-equilibrium chemistry on-the-fly

Radiative transfer of Lyman-Werner band ($\lambda = 912 - 1110$ Å) photons

Z-dependent dust-to-gas ratio (Péroux & Howk 20, Popping & Péroux 22)

H₂-based star formation

A (25 cMpc)³ volume Mass resolution --DM: $3.37 \times 10^5 h^{-1} M_{\odot}$ Stars: $7.2 \times 10^3 M_{\odot}$ minimum cell size = 32 pc

EVOLUTION OF THE COSMIC H₂ DENSITY

Khatri+ in prep

ATOMIC CARBON ABUNDANCE

CO ABUNDANCE

Khatri+ in prep

C⁺ ABUNDANCE

Khatri+ in prep

[CII]-M_{mol} RELATION

SPATIAL VARIATION OF $\alpha_{[CII]}$

$$\frac{2}{\log_{10}\left[\Sigma_{\rm [CII]}\,/\,L_\odot\,kpc^{-2}\right]}\,$$
 Khatri+ in prep

$$\frac{4}{\log_{10} \left[\Sigma_{\rm H_2} \,/\, \rm M_\odot \, kpc^{-2} \right]} \, \, 8$$

SPATIAL VARIATION OF $\alpha_{[CII]}$

CONCLUSIONS

 HYACINTH: A sub-grid model for non-equilibrium hydrogen and carbon chemistry on-the-fly in cosmological simulations <u>arXiv:2402.11023</u>

 \blacksquare C⁺ / H₂ abundance insensitive to galaxy properties

 α_[CII] varies across galaxies – with the star formation rate and within galaxies/galaxy groups.