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Magnetic fields (B) are an important component of galaxies

51, HST image + B lines from
synchrotron polarization
Borlaff+2021

Interstellar and circumgalactic medium (ISM and CGM)
hydrostatics (Boulares & Cox 1990; van de Voort+2021)

dynamics of molecular clouds and thermal instabilities in
the CGM (Crutcher 2012; Ji+2018)

determine the transport of cosmic rays (CRs) through ISM

and into CGM, which can be very significant,
(but remains highly uncertain... Ruszkowski & Pfrommer 2023 for a recent
review)




Measuring extragalactic B and CRs is difficult + indirect:
synchrotron emission is one common way to investigate

Emission from CRs gyrating
around magnetic field lines
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Need to make simplifying
assumptions to break this
degeneracy!
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https://emmaalexander.github.io/images/synchrotron.png

The Synchrotron Equipartition Model
Beck & Krause 2005 (BKOb)
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CRp'e (K,). /e = Dea(@)(fy * Lea} @)
spectral shape Homogeneous
(a) constant ISM slab

L ~1-2 kpc

Volume-filling (f,=1) B
assumed to dominate the
emission and have equal

energy density to CR protons

(ecr)

synch




Our B estimates often boil down to a few points per galaxy

at best
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We can finally forward-model B and CRs from cosmological initial
conditions in high detail!

. Feedback In Realistic Environments

e High-res zoom-in,
cosmological sims run with
GIZMO (Hopkins+2018,
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| == FIRE i 2022)
Time [Gyr] e Explicit treatment of stellar
Simulation feedback models vary feedback, cooling
considerably - accurate B-field e Resolve multi-phase ISM

saturation strength, morphologies in

e | |deal MHD, anisotropic
conduction+viscosity
e | CRs from SNe injection

dense SF gas requires crucial physics
(Su+2018)




FIRE-2 Simulations produce realistic |[B] and geometries in simulated
L™ galaxies (Ponnada+2022, MNRAS)
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Cosmic Ray Intensity (m?ssrGeV/n) !

Now with fully resolved CR p™, e7, e", and secondary

spectral Hopkins+2022)
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CRs injected from SNe and
fast OB winds with j(R) ~ R
Yoy ~4.72

10% of initial (pre-shock)
SNe KE into hadrons, 0.2%
into leptons

K= Ko(E/E 1,6 =0.5

1 GeV



Forward modeling synchrotron emission from simulations
with self-consistently evolved |B|, CR

Take internally evolved CRe spectrum j,

Compute € (B, e5) for each CRe bin within gas
cell, integrating over spectrum

y [kpc]

Integrate € (B, ez) along line of sight -1 ,Q , U

| A, 4 y
—20 0 20
x [kpc]

m12f FIRE-2 + FIRE-3 restart 2.0



Most of emission comes from the WNM/CNM, not the most
volume-filling phases of the ISM (WIM/HIM)
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The traditional equipartition model can underpredict B in the emitting
gas by factors of ~2-3, primarily due overestimating L (or f, )
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An interpretive toy model suggests deviation is largely due to small
scale height and clumping of emission regions

ug(z) and u.(z) (ug) = <uB()>e—(|Z|/HB> Multi-phase ISM
allowed to vary with clumping Pv(néu,) =
(non-equipartition)  {ecr) =¥ * <MB0>( factor

Viot - {_(1”6L43+S5/2)2}
\/27(55 235

(u) )5
(uB,)

2/(a+3
Dense, neutral, _— /Reee3)
midplane gas (up,) = B (y=1)y

dominates the emission 2yC * Hp CXP{ —32 }

At the cost of introducing physical
parameters due to relaxing assumptions,

can get a better hold of what B or e, we
Ponnada+2024a, MNRAS estimate (weighted by IV, etc)! 12
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Cosmic rays may be important, depending on their transport.
What about plasma-physically motivated models of transport?

“Extrinsic Turbulence” (ET)

CRs \\ B
_L\\/‘\

AN

Scatter off magnetic field fluctuations in
background medium
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(Hopkins+2021)
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Different micro-physically motivated! CR transport models
tell a tale of hysteresis in synchrotron emission!’
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In short,

Synchrotron emission can be dominated by relatively dense phases of the
ISM

Equipartition model with fiducial assumptions can underpredict B in this
emitting gas by factors of ~2-3, primarily due overestimating f,,

There is not a single B in the ISM! - it is clumpy, stratified and multi-phase

Different CR transport prescriptions predict different gas properties +
synchrotron!

Paper Il

P Check out the papers herel!

@ samponnada.info sponnada@caltech.edu



Thank you for your attention! Questions?



Spectral variation not so important for typical spiral galaxy
conditions, but can be significant where losses are large!
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FIRE-3 L, galaxies in OoM agreement with observed nearby face-on spiral galaxies
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BKOb5 can get volume-weighted B, but is due to a conspiracy of factors,
can also under-/over-predict in inner/fouter disk by factor ~ 1.5x
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Traditional equipartition model also under-predicts e in

emitting gas, though not to same degree as ug
L5 -
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SC models can undergo extreme ejective feedback via
CR-driven winds due to ‘'SC runaway’

Vo T =9.32 Gyr 10 Z
 fons ey, 7= 9.32 Gyr .
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SC runaway leads to ‘ejective’ Leads to changes in mor.ph.ology,
. ) B + phase structure, coincident
feedback event, driving winds out . .
with change in synchrotron
of the galaxy .
properties
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