Dynamically Cold Disks in the early Universe: Myth or Reality?

Mahsa Kohandel, Scuola Normale Superiore, Pisa, Italy

erc

With: Andrea Pallottini, Andrea Ferrara, Anita Zanella, Francesca Rizzo and Stefano Carniani

Star formation across Cosmic Time

UNIT VOLUME PER FORMATION STAR

Madau & Dickinson 2014

SF galaxies across Cosmic Time

e.g., Förster-Schreiber et al. 2006, 2018, Tacconi et al. 2020, Wuyts et al. 2020, Wisnioski et al. 2015, Swinbank et al. 2017, Harrison et al. 2017

SF galaxies across Cosmic Time

e.g., Tsukui et al. 2021, Jones et al. 2021, Rizzo et al. 2021, Herrera-Camus et al. 2022, Lelli et al. 2021, Fraternali et al. 2021, Roman-Oliveira et al. 2023, Pope et al. 2023, Parlanti et al. 2023

More disks in the Early Universe

Ferreira et al. 2023

See also Fudamoto et al. 2022; Jacobs et al. 2022; Wu et al 2022; Huertas-Company et al. 2023, Robertson et al. 2023

Galaxy kinematics through various emission lines

Tracing various phases of the ISM

ROTATION-TO-DISPERSION RATIO

Hα: 104 K [CII]: ~10² K $CO < 10^{2} K$

Standard theoretical scenario

Pillepich et al. 2019

But also: Dekel et al. 2014; Zolotov et al. 2015; Bird et al. 2013, 2021; Dekel et al. 2021; Yu et al. 2021

 $z \ge 4$ galaxies are predicted to be Irregular, clumpy and turbulent and rotation-dominated disk structures are transient.

Kretschmer et al. 2021

Tension between theory and observations

Q1) Do zoom-in cosmological simulations with a more complex chemistry and emission line modelling reproduce dynamically cold disks?

O2) Can we reconcile the tension between theory and observations by employing different kinematic tracers?

SERRA: A suite of zoom-in early galaxies

SERRA properties summary:

- Redshift range: 15 < z < 4
- Stellar masses: $10^6 5 \times 10^{10} M_{\odot}$
- IR Luminosities: $10^7 5 \times 10^{11} L_{\odot}$
- UV mag: $-21 < M_{UV} < -15$
- [CII] luminosities: $10^6 10^{10} L_{\odot}$

From cosmological to molecular cloud scales

Pallottini+17a,b,+19

Accreting filaments

Merging clumps/satellites

 Non-equilibrium chemical networks to form molecular hydrogen and turn it into stars Radiation field tracked on the fly to account for ionization and photodissociation effects

\$		

Resolution	
Gas mass	$M_{g} = 10^{4} M_{\odot}$
AMR	$\sim 80 - 0.1 \mathrm{c}$
At $z \simeq 6$	$\Delta x \simeq 30 \mathrm{pc}$

Molecular/stellar disk

Pallottini et al. 2022

Portrait of a SERRA galaxy at z=8

Portrait of a SERRA galaxy at z=8

Bridging simulations and IFU-like observations

Kohandel et al. 2020, 2023a, 2023b

Bridging simulations and IFU-like observations

[CII] 158 μ m: Cold, molecular/neutral gas tracer ($T \sim 100$ K)

Kohandel et al. 2023b arXiv:2311.05832

A sample of $\sim 3K$ SERRA galaxies

$M_{\star} - \sigma$ relation in SERRA galaxies

arXiv:2311.05832

Dynamically cold disks do exist in SERRA

4 6 8 Redshift Kohan

Kohandel et al. 2023b <u>arXiv:2311.05832</u>

And they are not transient

arXiv:2311.05832

High-z dynamically cold disks: Mich or Reality?

Q1) Do zoom-in cosmological simulations with a more complex chemistry and emission line modelling reproduce dynamically cold disks?

See also: Vadim Semenov, Aniket Bhagwat and Floor van Donkelaar presentations

- A1) Yes! One needs to model detailed ISM physics and multi-wavelength kinematic observables from simulations

High-z dynamically cold disks: Mach or Reality?

Q1) Do zoom-in cosmological simulations with a more complex chemistry and emission line modelling reproduce dynamically cold disks?

- A1) Yes! One needs to model detailed ISM physics and
- multi-wavelength kinematic observables from simulations

O2) Can we reconcile the tension between theory and observations by employing different kinematic tracers?

Multi-wavelength kinematics of Hibiscus at z=4.5

Kohandel et al. 2023b arXiv:2311.05832

Outflows complicate H α kinematics ...

[CII] velocity map

See also Ejdetjärn et al. 2024 arXiv:2401.04160

Photoionized regions outside the disk that are part of an expanding, cooling outflow

Kohandel et al. 2023b arXiv:2311.05832

Takeaways

When equipped with comprehensive ISM physics and multiwavelength treatments, zoom-in cosmological simulations reveal galaxies that efficiently form and sustain their dynamically cold disks as early as the EoR.

Galaxy kinematics is sensitive to the tracer used. [CII] effectively maps the thin, gaseous disk of galaxies, whereas $H\alpha$ also has contributions from extraplanar gas, such as outflows. Thus, using it as a kinematic tracer necessitates careful consideration and treatment.

More work is needed to bridge simulations and observations

Special Session SS8

Zoom-in views of galaxy disks across Cosmic Time: **Bridging simulations and observations**

k News conduct

info

Jbmissior

rs and/or

nip &

2 July 2024

Deadline: March 4