DAWN

The impact of an evolving IMF on galaxy evolution and reionisation

arXiv: 2312.12109

Anne Hutter Cosmic Dawn Center, University of Copenhagen

Elie Rasmussen Cueto (Master student), Astraeus Team (Pratika Dayal, Stefan Gottlöber, Maxime Trebitsch, Gustavo Yepes), Kasper Heintz, Charlotte Mason

Danmarks Grundforskningsfond Danish National Research Foundation

Why do we see a high abundance of bright galaxies at z>10?

Harikane+2023

Due to bursty star formation, radiative feedback pushing dust from star forming region, feedback-free starbursts, and/or top-heavier IMF?

see e.g. Dekel+ 2023, Ferrara+2023, Mason+2022, Trinca+2023

Can a top-heavy IMF explain the bright z>10 galaxy abundance?

IMF depends on gas temperature (metallicity, CMB temperature)

Integrate into Astraeus simulation framework

Elie Rasmussen Cueto Master student

Cueto, Hutter et al. 2023 arXiv: 2312.12109

Astraeus framework: simulating the evolution of galaxies and the IGM

Hutter+ 2021a, Ucci+2023, Hutter+ 2023a, Trebitsch+2023, Cueto+2023

Astraeus framework: simulating the evolution of galaxies and the IGM

Hutter+ 2021a, Ucci+2023, Hutter+ 2023a, Trebitsch+2023, Cueto+2023

The evolution of the UV LFs at z=5-12 hardly changes!

Free parameters:

- f_{*} = 0.01 / 0.025
 star formation
 efficiency
- f_w = 0.3 / 0.2
 SN wind coupling efficieny
- f_{esc} = 0.038 / 0.31
 ionising escape
 fraction

Values driven by z<10 UV LFs

The evolving IMF's lower mass-to-light ratio requires assuming a smaller star formation efficiency and stronger SN wind coupling.

Evolving IMF: Lower star formation efficiency leads to stellar masses being \sim 0.5-1 dex lower in same z=6-12 halos

Main characteristics of the evolving IMF:

slower build-up of stellar mass due to lower star formation efficiency

Evolving IMF: Lower stellar mass-to-light ratio

Main characteristics of the evolving IMF:

slower build-up of stellar mass due to lower star formation efficiency

reduced mass-to-light ratio due to a higher abundance of massive stars

Evolving IMF: star formation main sequence hardly changes

Characteristics of the evolving IMF:

star formation main sequence unchanged due to self-similar mass growth of halos

higher SFR for low stellar mass galaxies due to SN feedback being less delayed & located in more massive halos

Evolving IMF: mass – metallicity relation shifts to higher metallicities

Characteristics of the evolving IMF:

 $\left(1\right)$

higher metallicities at same stellar masses due to lower stellar-tohalo mass ratio & higher oxygen abundance

Note: metallicity-halo mass relation and metallicity-luminosity relation hardly change!

Evolving IMF: Only minor impact on reionisation topology

Conclusions

ASTRAEUS: self-consistent galaxy evolution model and reionisation:

- Semi-analytical galaxy evolution model fully coupled to a semi-numerical reionisation scheme
- Robust against mass and time resolution of underlying merger trees
- Publicly available at: <u>https://github.com/annehutter/astraeus</u>
- Inlcudes now an evolving IMF!

Effect of an evolving IMF compared to constant Salpeter IMF ...

- ... Galaxy evolution
- Slower build-up of stellar mass due to lower star formation efficiency and stronger SN feedback
- Lower stellar mass-to-light ratio
- Stellar mass metallicity relation shifted to higher metallicities
- VV luminosity dust mass relation shift to lower luminosities Possibility to test with observations?

... Reionisation

- Stronger correlation between large-scale ionising emissivity and density distribution
- Reionisation history and topology change only minorly.

arXiv: 2312.12109