Magnetic fields & cosmic rays in galaxy formation

Philipp Girichidis Institute for theoretical astrophysics (ITA) University of Heidelberg, Germany

Building Galaxies from Scratch University of Vienna February 19, 2024

Magnetic fields everywhere

Planets [here: Earth, credit: iStock]

Stars [here: Sun, credit: NASA/SDO/AIA/ LMSAL

Interstellar medium [here: Orion molecular cloud, credit: ESA and Planck **Collaboration**

Galaxies [here: M51, credit: Beck 2011]

Galaxy clusters [here: MACS J0717. 5+3745, credit: NASA, ESA, CXC, NRAO/AUI/ NSF, STScl]

6

4

2

log (correlation length [pc])

0

-2

credit: Jennifer Schober

Astrophysical magnetic fields

- Biermann battery (Biermann 1950) interactions of $e^- + \gamma_{\rm CMB}$ (Mishustin & Ruzmaikin 1972): \Rightarrow seed field $B_{\rm seed} \sim 10^{-20} \, {\rm G}$
- B_{seed} + flux freezing + compression $\Rightarrow B_{\text{seed}} \frac{\rho}{\rho_0} \sim 10^6 B_{\text{seed}} \sim 10^{-14} \text{G: too weak!}$
- need a dynamically amplified field
- $\partial_t \mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$

in ideal MHD (flux freezing)

Astrophysical magnetic fields

- Biermann battery (Biermann 1950) interactions of $e^- + \gamma_{\rm CMB}$ (Mishustin & Ruzmaikin 1972): \Rightarrow seed field $B_{\rm seed} \sim 10^{-20} \, {\rm G}$
- B_{seed} + flux freezing + compression $\Rightarrow B_{\text{seed}} \frac{\rho}{\rho_0} \sim 10^6 B_{\text{seed}} \sim 10^{-14} \text{G: too weak!}$
- need a dynamically amplified field
- $\partial_t \mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$
- ideal MHD (ionisation > 10^{-6}) no free parameters, theory "fully" understood

in ideal MHD (flux freezing)

Magnetic field strength

- dynamo: convert $E_{kin} \rightarrow E_{mag}$ •
- saturation $E_{\rm mag} \approx 0.1 0.3 E_{\rm kin}$ •

difficulty of understanding B: provide sufficient/relevant conditions (high Re_m, high Re)

Cosmic rays facts

- 1912: discovery by Victor Hess (balloon experiment)
- no rays, but high energy particles $(p, e^+, e^-, \alpha \dots)$
- Iow-E CRs (Padovani+2020)
 Large cross section with gas
 Strong losses
 heating of dense star forming regions
- **GeV CRs** (Ferriere 2001, Ruszkowsky & Pfrommer 2023) Most of energy (weak losses) **Dynamically relevant** via pressure: similar E-densities: $e_{\rm cr} \sim e_{\rm kin} \sim e_{\rm therm} \sim e_{\rm mag}$
- high-E CRs (Kotera&Olinto 2011) Low integrated energy Extragalactic important as observational diagnostics

Motivation for CRs in galaxies classical stellar feedback too weak

- evidence for strong outflows
- in all phases, H^+ , H, H_2
- classical stellar feedback
 - cools too fast (SNe)
 - does not couple enough (γ)
 - too weak (winds, protost. outflows)

CR Transport illustrated **Advection**

- CR gyrate around B
- vertical motions of B \Rightarrow coupled to motions of CRs
- gas (partially) ionized
- ideal MHD, B frozen in gas
- $CR \Leftrightarrow B \Leftrightarrow gas$
- advection with the gas

CR Transport illustratedDiffusion

- perturbed field
- scattering off of B irregularities
- elastic scattering \Rightarrow diffusion
- realistic environment: turbulent 3D
- diffusion relative to the gas
- diffusion mainly along B

perturbed field

Back reaction CR \Leftrightarrow *B* **Streaming instability (Skilling 1975)**

- back-reaction onto B-field, gyro-resonances \Rightarrow no simple diffusion
 - \Rightarrow transport + E-transfer $E_{cr} \leftrightarrow E_{mag}$
- bulk of CRs streams with Alfvén speed, Alfvén heating
- equate growth and damping (Wiener+ 2013)
- $\Gamma_{\text{growth}} = \Gamma_{\text{NLLD}} + \Gamma_{\text{in}} \Rightarrow H = -\mathbf{v}_{\text{A}} \cdot \nabla P_{\text{cr}}$
- new self-consistent PIC models (Shalaby et al. 2021/2023)
 - \Rightarrow many unknowns concerning
 - transport speeds
 - energy exchange

CR+MHD (in grey approximation) $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$ $\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot \left(\rho \mathbf{v} \mathbf{v} - \frac{\mathbf{B} \mathbf{B}}{4\pi} \right) + \nabla p_{\text{tot}} = \rho \mathbf{g}$ $\frac{\partial e_{\text{tot}}}{\partial t} + \nabla \cdot \left[\left(e_{\text{tot}} + p_{\text{tot}} \right) \mathbf{v} - \frac{\mathbf{B}(\mathbf{B} \cdot \mathbf{v})}{4\pi} \right] = \rho \mathbf{v} \cdot \mathbf{g} - \nabla F_{\text{st}} + \nabla \cdot \left(\mathbf{K} \cdot \nabla e_{\text{cr}} \right) + Q_{\text{cr}}$ $\frac{\partial \mathbf{B}}{\partial \mathbf{A}} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0$ advection $\frac{\partial e_{\rm cr}}{\partial t} + \nabla \cdot (e_{\rm cr} \mathbf{v}) = -p_{\rm cr} \nabla \cdot \mathbf{v}$ $-\nabla F_{\rm st} - \Lambda_{\rm cr}$ $+Q_{\rm cr}$ $p_{\text{tot}} = p_{\text{therm}} + p_{\text{mag}} + p_{\text{cr}}$

 $+ \nabla \cdot (\mathbf{K} \cdot \nabla e_{\mathrm{cr}})$

adiabatic

streaming

diffusion

sources/sinks

Piernik: Hanasz+2003 FLASH: Girichidis+2014,2016a Arepo: Pfrommer+2017, Pakmor+2016,2017, Thomas+2021 RAMSES: Dubois+2016, Commercon+2019

review on numerics: Hanasz+ 2021

different setups

Hanasz+ 2003, Girichidis+ 2016,2018, Simpson+ 2016, Dubois+ 2016, Farber+ 2018, Armillotta+ 18,21,23 Commercon+ 2019, Butsky+ 2020, Rathjen+ 2021,2022

Booth+ 2013, Ruszkowski+ 2017a, Pakmor+ 2016, Pfrommer+ 2017, Jacob+ 2018, Dashyan+ 2020, Semenov+ 2021, Girichidis+ 2022/23, Thomas+ 2021,2023, Farcy+ 2022, Nunez-Castineyra+ 2022, Peschken+ 2023

isolated galaxies

cosmological galaxies

Jubelgas+ 2008, Salem+ 2014, Chan+ 2018, Hopkins+ 2020/2021, Buck+2020, Ji+2020, Böss+ 2023, Rodriguez Montero+ 2023

ISM evolution without CRs

dis-	+201	16)
		• ~,

dis-	+201	16)
		• ~,

Halo mass dependence

- CR power for outflows is limited
- above $M \sim 3 \times 10^{11} \,\mathrm{M_{\odot}}$ no outflows
- depends on injection efficiency
- high diffusivity, weaker mass loading

- in dwarf: CR transport mainly advective
- in MW: CR transport mainly diffusive

CR-driven dynamo

- (Hanasz & Lesch 2000, Lesch & Hanasz 2003)

Pakmor et al. 2016

Cosmological zoom-ins turbulent CGM, accretion

- include realistic environment around galaxies (turb. & accretion)
- effect of CRs extends >100kpc into halo (T, $X_{cr} = P_{cr}/P_{therm}$)
- details of CR transport and losses matter

More accurate coupling CR ⇔ gas+B

- new approach in fluid approximation
- Thomas+ 2019,2021,2022:
 - follow CR energy AND energy in magnetic waves
 - averaged over *p*, given fixed spectrum

CR energy [erg]

Thomas et al. 2022

Extension to spectral code

Werhahn et al. 2021

Spectrally resolved CRs temperature and CR content

- high-E CRs escape faster variations in spectral shape and $D_{\rm eff} = \langle D(p) \rangle_{\rm e}$
- larger region of cold CGM impact on gal. fountain
- larger region with CR dominated pressure

Connection to gamma rays

Steady state vs. full spectrum (Werhahn+ 2021abc, 2023)

• spectral model: better fit to spectra

strong differences between energy ranges

Summary

- Magnetic fields need efficient dynamo conditions!
 - high resolution, resolved vortices (or subgrid model)
- CRs cool less efficiently than thermal gas and $e_{\rm cr} \sim e_{\rm kin} \sim e_{\rm therm} \sim e_{\rm mag}$
- CR drive outflows from galaxy and substantially change CGM
- big construction sites in CR physics
 - transport details (diffusion/streaming, transport speed)
 - details of the spectrum (high-E $\Leftrightarrow \gamma$ -rays, low-E \Leftrightarrow ionisation rate)