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CR-fluid transport on galactic scales

Transport of the cosmic-ray fluid in MHD simulations

CR-fluid propagation speed vCR ≈ vgas + vstream + vdiff

• Advection along with the magnetic field by thermal gas 

• Streaming along the magnetic field at the local ion Alfvén 
speed in the direction of decreasing pressure 

• Diffusion in the wave frame due to pitch-angle scattering

vstream = − vA,i
B̂ ⋅ ∇Pcr

| B̂ ⋅ ∇Pcr |

vdiff = −
1
σ

B̂ ⋅ ∇Pcr

Pcr
B̂

LIMITATION:  is generally assumed to be constant!σ
Scattering coefficient (or diffusion coefficient )κ = 1/σ

CRs with GeV kinetic energies are scattered by Alfvén waves excited by the CRs themselves  
via the streaming instability (e.g., Zweibel 2013, 2017; Evoli et al. 2018) 

Microscopic - scale assumption



Towards a more realistic prescription for cosmic-ray transport

PHYSICALLY MOTIVATED PRESCRIPTION FOR THE 
CR SCATTERING COEFFICIENT 

variable  set by the balance of excitation and damping of 
streaming-driven Alfvén waves

σ

ALGORITHM FOR CR-FLUID TRANSPORT IN 
ATHENA ++ (Jiang & Oh, 2018)   

Two-momentum equations (CR energy and flux density)        
valid for CR protons with GeV energies

POSTPROCESSING OF THE TIGRESS MHD 
SIMULATIONS (Kim & Ostriker 2017, Kim et al., 2020) 

Local patches of galactic disk self-consistently modelled with 
resolved star formation and supernova feedback

Armillotta et al., 2021, 2022, 2024

included in

used for



Propagation of cosmic rays in the multiphase ISM

ION-NEUTRAL  
DAMPING • CR scattering coefficient varies over more than four 

orders of magnitude 

• Weak scattering in high-density regions where waves 
are efficiently damped by ion-neutral collisions

Realistic representation of the multiphase ISM is crucial in studies of CR transport!

• Advection is the main mechanism responsible for 
propagation of CRs in the hot and rarefied gas 

• Streaming and diffusion are important in higher-
density cooler regions



Cosmic rays in the solar neighborhood environment

Agreement with the observed energy equipartition 
near the midplane!
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Large CR pressure gradients in the extra-planar region 

Can CRs efficiently counteract gravity and drive flows 
of gas away from the disk? 
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MHD simulations of outflows including cosmic rays

1) HOT AND FAST WINDS

nH ∼ 10−4 − 10−3 cm−3

T ∼ 106 − 107 K

v ∼ a few × 100 km/s

2) WARM AND SLOW WINDS

nH ∼ 10−2 − 10−1 cm−3

T ∼ 104 K

v ∼ 10 − 20 km/s

vA,i ∼ 10 − 20 km/s

CONTROLLED BOUNDARY CONDITIONS

ec = ec, post−process ; Fc =
4
3

ec(v + vA,i)

Armillotta et al. 2024
Injection of gas  
and CRs

Negligible CR effect  
in hot thermally-driven 

winds

CRs can efficiently drive 
flows of warm gas away 

from the disk!



az,c = −
1
ρ

d
dz

Pc
  decreases towards higher z:  

 NET ACCELERATION AGAINST GRAVITY
Pc

Cosmic ray-driven warm winds
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Conclusions

• Resolving the multiphase structure of the ISM is crucial for properly modeling cosmic-ray transport:     
their propagation is different in different thermal phases of the gas 

• There is no ‘single’ cosmic-ray diffusivity:  
scattering of cosmic rays significantly changes based on the properties of the background gas 

• The predictions of our model for cosmic-ray transport agree with observations in the solar 
neighborhood: energy equipartition near the midplane 

• Cosmic rays can efficiently drive warm flows of gas out of the plane:                                                        
these outflows are overall smoother and slower than supernova-driven outflows

Cosmic-ray transport and feedback in star-forming environments


