SPICE: Connecting stellar feedback and cosmic reionisation

Aniket Bhagwat with Tiago Costa, Benedetta Ciardi, Rüdiger Pakmor and Enrico Garaldi

Building Galaxies From Scratch, Vienna 2024

MAX-PLANCK-INSTITUT ASTROPHY

Tracing imprints of different modes of stellar feedback

- How much do stellar/gas/radiative observables of high redshift galaxies depend on feedback models?
- Do we understand the degeneracies in the schemes we choose?
- HST/ALMA already asked questions, JWST piled on, have we explored the phase space enough to answer these questions?

arXiv:2310.16895 Introducing: SPICE

- RAMSES-RT (Rosdahl et al. 2013, Rosdahl & Teyssier 2015)
- Non-equilibrium thermochemistry of HI, HeII, HeIII fully coupled to the local radiation field
- Self consistent radiation transport: 5 radiation groups: IR, optical, 3 UV with a subgrid dust model
- Star formation based on a SGS turbulence model (Kretschmer & Teyssier 2020)
- Mechanical supernova feedback (Kimm & Cen 2014) with a new variable SN II and hypernova implementation: 3 SN feedback behaviours

Radiation pressure on dust

LyC radiation escape

C II emission

 $L_{box} \sim 15$ cMpc with maximum resolution of ~ 28 pc (~15 pc) at z = 5 (10)

Supernova feedback variations: "bursty-sn"

- Single SN event per stellar particle at 10 Myr after birth
- Energy per individual SN, $E_{\rm SNII} = 2 \times 10^{51} \rm erg$
- Produces consistently bursty star formation histories

"IMF averaged" model

Supernova feedback variations: "smooth-sn"

Realistic SN delay time distribution $t_{\rm SNII} = 3 - 40 {\rm Myr}$

Starbursts largely induced by mergers

More physically motivated as compared to bursty-sn

but evolves off to resemble smooth-sn

Step by step moving towards a more physically motivated model

Stellar radiative feedback

- Radiation transport in 5 frequency groups: Infrared, Optical and 3 UV groups
 - Feedback channels include:
 - Photo-ionization
 - Photo-heating

• Radiation pressure on dust

Different information from different bands

Reionisation history

Reionisation history is sensitive to the mode of SN feedback.

Phase structure of a halo at z=5

Phase structure of a halo systematically affected by different SN behaviour

Reionisation incomplete by z=5 Smooth SN: Rotation supported galaxies

JWST : F200W+F277W+F444W

Reionization complete by z=5 Bursty SN: Dispersion supported galaxies

JWST : F200W+F277W+F444W

Reionisation incomplete by z=5 Hyper SN: A mix of rotation and dispersion

JWST : F200W+F277W+F444W

Feedback variations result in systematically different galaxy kinematics and emergent morphological mixes

Star formation main sequence (SFMS)

- SFRs calculated over last 10 Myr intervals
- A main sequence naturally emerges and all models show excellent agreement with JWST/HST observations

Observed star formation main sequence cannot be used to differentiate between models

UV luminosity function (UVLF)

- Intrinsic LFs look very similar at z=7 but show differences by z=5
- Dust attenuated LFs are identical below $M_{1500} < -16$

Dust attenuated luminosity functions cannot be used to differentiate between models

LyC escape fractions

- Escape fractions computed using RASCAS by allowing propagation to viral radius
- Angle averaged escape fractions using 200 sightlines

Ionising radiation escapes more easily in disturbed systems.

Connecting to observations

Observations quote "Ionising photon production efficiency" to comment on galaxies that reionise the universe

•
$$\xi_{ion,0} = \frac{\dot{N}_{ion}}{L_{1500}}$$
, assume $f_{esc} = 0$, therefore intrinsic

All models show degenerate ionising photon production efficiency. Reionsiation is f_{esc} limited, *not* photon production limited

Emission line observables: [CII] line

- On-the-fly RT already tracks the FUV radiation ightarrowand non-equilibrium electron and HI fractions.
- Subgrid model to calculate [CII] luminosities, kinematics and synthetic observations for ALMA!

AB et al. in prep.

Different kinematics in [CII]

Broad [CII] lines: A tool to constrain feedback?

bursty-sn

smooth-sn

arXiv:2310.16895 Conclusions

- Properties of galaxies in different reionsiation scenarios vary dramatically in a major, systematic way
- Some galaxy observables such as SFMS/UVLF are degenerate
- Mode of feedback very strongly alters the morphological mix of galaxies that emerge *post-reionisation*
- More ionising photon production/more supernovae does not mean faster reionisation: f_{esc} limited reionisation!
- Observations of galaxy morphologies post reionisation will help constrain stellar feedback models at z>5
- Multi-wavelength studies are key!

$M_* = 10^{8.5} M_{\odot}$ at z=5.4!

THANK YOU!

